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Abstract

We propose a general mathematical framework for dealing
with Light Fields:

The Light Field is a 2-form on Light Space (LS). Light
Space is the set of all rays in 3D, and is locally isomorphic
to the Grassmann manifold G4

2. The Light Field form is de-
fined as the pull-back of the brightness form of the observed
surface. It satisfies equations related to the conservation
law in fluid dynamics (or optical flow), and to Maxwell’s
equations, with images as boundary conditions. Due to the
existance of a projection onto the viewed surface, LS is a
bundle, and the camera itself is a section on it. The image is
produced as a restriction of the Light Field to that section.

Practical applications that we are targeting are Light
Field reconstructions and Image Based 3D, in general.

1 Introduction

The Light Field [1] is a new, and promising approach to
3D graphics. Besides being one of the main approaches to
Image Based Rendering, it is also an intrinsic part of all
other Image Based applications.

Still, due to the difficult nature of the problem of doing
3D based on the Light Field, it has found very few practi-
cal applications. The difficulties are (1) technical and (2)
theoretical.

(1) Authors point to the need of a large number of cam-
eras in order to capture the Light Field, and need of high
computer power and gigabytes of disk space in order to pro-
cess the data.

(2) Only first steps have been made towards a complete
mathematical model of the Light Field [6], [2]. The theory
is still in its infancy.

Thus, our belief is that building a good mathematical
framework for treating Light Fields will not only ’shed
light’ on (2), but will also improve the methods of han-
dling the technical problems (1) through better understand-
ing. This paper is our first attempt to put together a mathe-
matical model for the Light Field.

All expressions and considerations are local. Currently
we do not attempt to capture the global nature of surfaces
and Light Fields.

2 Main Concepts

In this section we define new terms and give new geometric
interpretation to existing terms. We base our discussion on
concepts that can be found in [3], [4], [5].

2.1 Brightness

We consider Light Fields created by a Lambertian surface Σ
in 3D. The surface reflects light equally in all directions. As
a result, each point on the surface defines a pencil of light
rays with equal intensity.

Brightness is energy density on the 2D surface Σ. In
other words, brightness has to be described by the volume
form in 2D. In this way, brightness is a 2-form F̃ defined
on Σ. We can integrate over any patch S on Σ to get the
total energy

∫
S

F̃ radiated from it. Note that this is the co-
ordinate free expression for the integral of a 2-form over the
manofold Σ on which it is defined.

Locally, the surface can be parametrized by x1, x2 as
(x1, x2, f(x1, x2)) ∈ R3, where f(x1, x2) is a function,
and then the brightness would be F̃ = F̃ (x1, x2)dx1∧dx2.

2.2 Light Space

Light Space (LS) is the space of all light rays in 3D. As a
manifold it is equivalent to the tangent bundle to the sphere
S2. Locally, it is equivalent to the Grassmann manifold G4

2.
As it is well-known, G4

2 can be represented as the Klein
Quadric in the space of skew symmetric tensors in R4. Ten-
sors belonging to the Klein Quadric satisfy the Plucker con-
dition for decomposability

T ∧ T = 0 (1)

Often, ’Light Sandwich’ coordinates are used in Light
Space. Light rays are parametrized by a pair of points at
which they intersect two fixed parallel planes [1]. Tensors
generated from two points are obviously decomposable and
satisfy (1).

We also find useful the ’Screw’ coordinates [2] in Light
Space: If eµ are basis vectors in R4,

eµν = eµ ∧ eν (2)
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is the basis for skew symmetric tensors, which can be
written as

T = a1e01 + a2e02 + a3e03 + b1e23 + b2e31 + b3e12 (3)

We will use the notation

T = (�a,�b). (4)

Because of the projective treatment, we can always con-
sider the first vector normalized,

�a · �a = 1. (5)

The Plucker condition in screw coordinates is

�a ·�b = 0. (6)

�a is the direction, �b is the ’moment’ of the line, and we
can always write

�b = �r × �a (7)

where �r is any point on the line.
Note also similarity with the Maxwell tensor, with �a tak-

ing the place of the electric field, �b - of the magnetic field
[7].

2.3 Light Field

The Light Field is a skew symmetric tensor field F (aloso
known as 2-form) in Light Space. This field satisfies certain
equations, derived later in this work. Now we will describe
how the 2-form F is generated. The mechanism is similar
to that of a fluid in space-time, or optical flow in video (see
Appendix).

A light ray through a point on the surface Σ parametrized
by x1, x2 can be locally represented as

(�a, (x1, x2, f(x1, x2)) × �a) = (�a,�b(x1, x2)) (8)

All rays through that point have same brightness. In this
way the points on the surface define a projection p in Light
Space, which maps all lines from each pencil to the point
on the surface where that pencil starts from. In our local
coordinates this projection is π2(�a, (x1, x2)) = (x1, x2) ∈
Σ.

The above projection is a map that sends points in Light
Space belonging to same pencil to the corresponding point
on Σ. Because of that projection, Light Space is a bundle.
Sometimes we call it ’Light Bundle generated by a surface
Σ’.

The above projection mapping p : G4
2 → Σ defines a

pull-back of any differential form on Σ back to Light Space.
In the case of the brightness 2-form F̃ , we have:

F = p∗(F̃ ) (9)

This 2-form F is the Light Field. In local coordinates
xµ, µ = 1, 2 on the surface and y i, i = 1, 2, 3, 4 on Light
Space,

(p∗(F̃ ))ij(y) =
∂pµ

∂yi
(y)

∂pν

∂yj
(y)F̃µν(p(y)). (10)

2.4 Camera

A camera is a local section on the Light Bundle. In more
detail, Light Space is a bundle p : G4

2 → Σ, and any section
on it is a camera. A section is a mapping σ : Σ → G4
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that satisfies p(σ(x)) = x for any x ∈ Σ. This is simply a
condition that the camera is not degenerate, i.e. it sees each
point x ∈ Σ only once.

A pinhole camera at a point �r in 3D is a section in Light
Space that is also a pencil defined by that point. All rays
captured by the pinhole camera are described in screw co-
ordinates as (�a,�r ×�a), and parametrized by the unit sphere
(because �a ∈ S2).

Other examples of cameras are described in a recent pa-
per [6].

A picture is the restriction of the Light Field 2-form F to
the graph of the section. It is a density 2-form, not a scalar
function.

3 Equations for the Light Field

The Light Field two-form F is decomposable. This is so
because it is a pull-back of the volume form on the surface,
which is decomposable.

The condition for decomposability

F ∧ F = 0 (11)

is completely independent from (1). Another coinci-
dence is that the electromagnetic field of arbitrarily moving
point charge is described by decomposable Maxwell tensor
[7].

Second property of the Light Field is that F is closed.
This is so because it’s the pull-back of a closed form on Σ:

dF = dp∗(F̃ ) = p∗(dF̃ ) = 0 (12)

Last equality comes from dF̃ = 0. Again, electromag-
netic field is a closed 2-form.

In order to continue, we need a metric tensor in Light
Space. One way is to derive it from the metric in R4, but
this metric itself is not defined. We only know the metric
in 3D space. Another approach is to use metric, natural in
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screw theory. Also, we may choose to pull-back the metric
from the surface.

Given a metric g in Light Space, we can define a Hodge
∗ operator. By definition, ∗ sends p-form T1 to (n−p)-form
∗T1 and is such that for any p-form T2

T2 ∧ ∗T1 =< T2T1 >g ωg (13)

where ωg is the metric volume form. Hodge ∗ encodes
the metric stricture into the exterior algebra. Having a ∗
operator makes it possible to calculate the following 1-form
in Light Space: J = ∗d ∗ F.

Now we are ready to define our formulation of the prob-
lem of reconstructing Light Fields:

Given a 1-form J satisfying d ∗ J = 0, and boundary
conditons, the Light Field can be found by solving

dF = 0 (14)

∗d ∗ F = J (15)

We should point out that (14) and (15) are identical to the
coordinate free expression for Maxwell’s equations. We can
use methods and ideas from the very well developed area of
electromagnetic theory to solve for Light Fields, even if our
metric and coordinates are different.

Notice also that the Light Filed is defined by a current
J , which is in a way ’the derivative’ of a Light Field. We
expect that this current is free from the redundancy of light
rays that are constant along fibres in the Light Bundle, and
it is zero almost everywhere.

When solving the equations we need boundary condi-
tions. These could be the values of F restricted to certain
sections in the Light Bundle. As we know, sections are cam-
eras and define pictures. So, we are back to reconstructing
the Light Field from pictures. Note, however, that in our
case a small number of pictures must be sufficient.

4 Closing remarks

We point the reader to certain similarity with fluids. ∗J de-
scribes the flow of a conserved fluid in the 4-dimensional
space of rays (Light Space). This fluid generates the Light
Field. Equation (14) states that the Light Field itself is
a conserved fluid flowing in Light Space, constrained by
equation (15).

As it is well-known, in the case of J = 0 we can act on
(14) with ∗d∗ and on (15) – with d, and add them to derive
the Laplace equation. So, at least to some approximation,
the Light Field can be reconstructed by solving the Laplace
equation. Again, notice that the Laplacian depends on the
metric in Light Space.

With some approximation we expect that a Healing
Brush - type reconstruction [8] of the Light Field will work
with J extracted from a different area in Light Space to re-
construct missing or damaged area. We do not have to go
up to second order Poisson equations, because (14), (15) are
first order and iterative solutions are expected to converge
faster.
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5 Appendix

5.1 Geometric model of a fluid

A fluid in space-time R4 is the following pair: a bundle
p : R4 → R3 and a 3-form α̃ on the base R3. The points of
the base are the ’molecules’ of the fluid, with density α̃.

If we define α = p∗(α̃) to be the pull-back of the density
3-form to R4, we can show that α is closed dα = 0:

dα = dp∗(α̃) = p∗(dα̃) = 0
This is the well-known conservation law for fluids (or

optical flow in video), written in coordinate-free form. It
applies to the case when the fluid is described by means of
3-form in R4 (or 2-form in R3).

When in R4 there is a metric g, then we have the vol-
ume form ωg and there exists a uniquely defined vector field
Y satisfying ωg(Y, X1, X2, X3) = α(X1, X2, X3) for any
vector fields X1, X2, X3. Y is a more common description
of the flow.
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