特集

計算機写真（Computational Photography*）の時代がやってくる

発明から100年：実現されるか集積写真術（Integral Photography）

Adobe Systems Incorporated Dave Story

Adobe Systems（米国アドビシステムズ社，以下Adobe）の顧客は創造性があり，また要望も多い。彼らはAdobe® Photoshop®によって“ありえない写真（impossible photograph）”を創ろうと考えている。カメラが撮った像ではなく，彼らが頭に描いた像を待たせるのである。この2つの間の乖離を埋められると，われわれは日々新たな手法の研究開発を行っている。

Adobe® Photoshop®が使える計算機能力は，ムーアの法則**のおかげで，指数関数的に増大している。
Adobe社内で開発された画像処理，画像強調のアルゴリズムのなかには，カメラ側がもっと進歩しないと商品として提供できないものがある。ソフトウェアだけでなくハードウェアの革新（イノベーション）が要求されており，これらの新規アルゴリズムを活用できるように，計算機写真を実現するカメラとレンズの試作にわれわれは着手しているのである。こうした研究の結果として前途有望と思われるのが，集積カメラ（plenopticカメラ）である。

この解説記事では，研究開発にいたったきっかけや動機について述べる。われわれの仕事が，カラー写真でノーベル賞を受け養したガブリエル・リプマンをはじめとして，多くの科学者の仕事にどのように依存しているかを示す。リプマンの"集積写真（integral photograph.1908年）"と，それが今日の技術でどのように現実化できるかを述べる。またこの新奇（novel）な手法の応用について述べ，写真と計算機の融合に関するわれわれの研究成果を示す。読者の皆さん，将来の写真を実現するために何らかの貢献をしたいと考えるのではなかろうかと思う。そしてわれわれは，計算機写真がその将来の写真になるものと信じている***。

1. 集積写真（Integral photography）の過去と未来

写真による画像取得の基本技術は初期のカメラと変わっておらず，3次元の視覚の場，写真乾板，フィルム，あるいはCCDのような2次元面上に描かれる。一方，計算機の能力は指数関数的に増加している。Adobe® Photoshop®のような新しい画像処理ソフトによって，従来，カメラと暗室では達成できず，あるいは非常に困難であった画像を，得ることができるようになった。しかし，さらに多くのことができるようになっており，また顧客もさらなる期待をされている。今日，われわれは，過去の偉大な着想の中で，将来の写真技術として実現可能なものを探している。

1908年，リプマンは3次元空間中の光のエネルギーを表す物理量である輝度を，写真技術として捕まえる方法を提案した。彼は記録されたデータを“集積写真”と呼んだ。もし，リプマンの集積写真を実用化できれば，多くの写真家にとって“デジタル暗室（digital darkroom）”とも言うべきAdobe® Photoshop®によってまったく新しいことが可能となるだろう。新しいアルゴリズムと集積カメラのようなハードウェアの改良によって，写真を撮った後からでも，フォーカスを合わせ直したり，カメラの視点を動かしたり，ピクセルごとにフォーカスを調整するような3次元的作業ができるように

* 註：Computational Lithographyは計算機リソグラフィーと訳されているので，Computational Photographyも計算機写真と訳した。
** 註：半導体回路の集積度が2年で2倍の速さで進むという経験則で，ムーアが提唱した。
***http://wehi.mit.edu/persci/people/adelson/pub_pdfs/elements91.pdfがplenopticカメラの機能を理解する上で参考になるであろう。

1072 O plus E・2008年10月
なる。Adobeは未来を志向し、「なぜできないの？」と
常に問いかけていているのである。例えば、写真の傷を修正
する修復筆（Healing Brush）をすでに持っているが,
像の任意の個所のピントを合わせたり、ピボレにでき
る焦点筆（Focus Brush）はなぜなのか？ 画像の各画
素における奥行き（depth）を知ることができ、それに
に基づき好きな部分を選んで処理するよう、新たな選択
筆（Selection Brush）はなぜなのか？このような
あるいはその他の処理は今のカメラではできていないが,
集積カメラとPhotoshopが実現すれば、ありえない
写真（impossible photograph）が容易に創れるよう
になるだろう。

2.どのように働くのか？ "奥行きのある画面
(deep pixels)" を持つことの意味

何層の画面（像面）を持つ仮想的なカメラを想像し
ていただけます。レンズを通った光はセンサーにさまざまな
角度で入射する。光線に沿って伝ばれるエネルギー
を示す物理量は、光線がセンサーに入射するときの場所
と角度の関数である 4 次元輝度*である。一般には、こ
の輝度情報は 2 次元画像に射影される。この 2 次元画像
は、撮影時の被写界深度と像面位置の関数である。しか
しながら "奥行きのある画素（deep pixel）" であれば,
さまざまなピントでの光線の情報を記録できる（図 1）。
すなわち、光は多くの画面層を通過し、各層にはそれぞれにピントの合った特定距離の物体の像だけが記録され
ることになる。各層の画像を選択的に組み合わせること
で、望ましいピントの像を創ることができる。1つの層
の像を最終像とすることもできるので、ピントの合った画
素を組み合わせることで画面上のすべてでピントの合っ
た像を得ることもできる。

集積写真によって奥行きがある画素を光学的に得るこ
とができる。1つのレンズによる画像形成ではなく、集
積写真は複数のレンズによって複数画像を像面に形成す
る。この方法では、3 次元空間中を通るそれぞれの光
線が、カメラセンサーに角度情報として記録される（図
2）。

このアプローチでは、従来のカメラのピクセルは多数
のサブピクセルに分割され、各サブピクセルは異なる方
向からの光線を記録することになる。それゆえ 4 次元像
の形成、すなわちセンサー上に 4 次元輝度の記録がな
される。3 次元空間のある面を通る光線は、4 次元データ
(x, y, α, β) で記録される。光線が像面を通る位置 (x, y)
と光線の方向 (α, β) は光学的な位相空間（光線空間）
をなす。

計算処理によって得られる画像では、各ピクセルは深
さの自由度を持ち、撮影した後で画像にパーカーナルな深
度を与えることができる。われわれのこの技術による画
像処理によって、カメラのレンズを使った焦点調節は、
ソフトウェアまたはカメラ用のレンズを使った焦点調節に置き換えられる。焦点合わせ、収差補正、さらに光学系の働き全
般が、カメラで得られる輝度情報を用いてソフトウェア
で行われることになる。そうすれば、レンズとは何かま
たたく新しい見方にもできるであろう。例えば、もし完全
なレンズを作る代わりに計算機暗室で収差補正ができれば,
安価でそれもあまりまともでないレンズでも高画質
の像を得ることができるようにしません。

図 1 ピントの奥行きのある仮想的なカメラ

図 2 一般的デジタルカメラでは（左）、輝度情報は各ピクセルごと
に取られてしまう。集積カメラ（plenoptic カメラ）では（右）、
マイクロレンズの集光作用によって輝度を記録できる。

Vol. 30, No. 10 • O plus E

1073
3. 角度分解能と空間分解能のトレードオフ——
両方を得ることはできないか？

4次元上の情報である輝度を2次元画面上で得るという従来の方法では、所与の2次元ピクセル配列に角度情報と空間情報を多重化して保存することが必要である。それゆえ、トレードオフが避けられ、角度情報の増やして空間情報を減らすか、あるいはその逆を選ぶことになる*。Adobeは、4次元輝度情報を2次元上に光学的に多重化する適切な方法を研究している。以下に、2つの方法とわれわれのそれらの改良について概観する。

4次元光線空間を空間成分と角度成分に分けた方法には、2つの方法がある。1つはレンズアレイ（またはレンズとプリズム）をカメラレンズの前に置く方法である（図3の右図）。Adobeでは、この方法を用いて、同じシーンを異なる視点からとらえた19の画像に、光学位空間を分割し多重化している。レンズアレイのおのおのレンズは異なる視点から像を扱うことになる。各レンズの像面に作られた各象が、主レンズによって最終像面に一緒に再結像している（図3では簡略化して各レンズアレイの中心を通る光線だけを描いてある）。もう1つの方法はリップマン自身の提案であり**、マイクロレンズアレイをイメージセンサーの直前に置く方法である（図3の左図）。図2ですでに述べたように、マイクロレンズの後に奥行きの深い（深い被写界深度の情報を持った）像が作られることがある。

2つの方法に共通の問題は、（マイクロ）レンズの数で光線空間の分割数が決まってしまい、それが固定されていることが予測できない。ただし、分割可能なピクセル数は有限であるから、レンズ設計者は深さと解像力の妥協点を見い出し、空間と角度への最適な割り当てを行わなければならない。

このトレードオフは、集積写真が直接するのほかの課題にも関係している。基本的には物体はランダムドット（完全拡散面）である。物体上の1点から出てくる光の輝度はその方向によらない。このため、輝度情報の方向（角度）成分には冗長性がある。このような密接に関連した課題を解決するには、後で図5や図6の右図で示すような両者の関係性を利用し、両者を同時に解決する方法が求められる。この方法を用いれば、空間分解能と角度分解能の配分を簡単に変えられるようになる。この冗長性を利用して角度分解能を低くし、空間分解能を高めることができる。

4. 集積写真は本当に実用化できるのか？

コンピューターの処理能力はますます増大しており、集積写真の100年の歴史において特別な状況になってきている。MITのAdelsonとWangはplenopticカメラを提案した**。リップマンのカメラをデジタル的に実現し、コンピュータビジョンに応用するものである。さらなる研究によって焦点ずらしのアルゴリズムが導入され、またplenopticカメラやlightfieldcameraがよって得られる輝度情報の3次元的に操る方法が考えられている。しかし、このような進展にもかかわらず、カメラのハードウェアによって相変わらず制限されている。われわれが今後持つコンピューター能力を十分に生かせるようにplenopticカメラを改良することはできるのだろうか？そして集積写真は実用化されるのだろうか？

最近の仕事で、輝度の角度情報を得るには、plenopticカメラのマイクロレンズの上に像ができないてもよいこととわれわれは示した（図4、Plenoptic2.0）**。マイクロレンズから像までの距離は任意でよく、角度情報はお

* A) ピクセルの大きさで空間分解能は制限されるが、回折現象によって周波数が1という限界がある。ここで、Δωは角度分解能、Δωは空間分解能、Δωは光の波長である。これららのうち厳しい方の条件によって可能の画素数が決まる。それは、空間と角度のそれぞれの分

図3 輝度情報の得るための2つの方法（Plenoptic1.0）

** B) 従来のplenopticカメラではマイクロレンズの開口数は長距離の開口数と同じでなくてはならない（訳注：以下の場合のはマイクロレンズの後ろ側像点がCDGが、側面像点がレンズの像ができると考えを理解したいと思う）。しかし、マイクロレンズの回折限界

O plus E・2008年10月
ののおののマイクロレンズの像から求めることができるのです。しかし、このようなフォーカスの方法では別の問題が生じる。最大の空間分解能を得るために、どのようにマイクロレンズのピントを合わせるかである。

結局のところ、ガリレオとケプラの2つの望遠系を用いた解がある。基本的には望遠系の機能がカメラ内部に組み込まれている。望遠鏡の接眼レンズを通じて人が見ることができるようにするためのもので、マイクロレンズの前の像面に作られている。望遠鏡の接眼レンズと眼の組み合わせがマイクロレンズに置き換わっており、CCDアレイが眼の網膜の役割を果たしている。マイクロレンズによって作られるそれぞれの小さなマイクロ画像は、全体画像から分割され、異なる仕方で反転されたり異なる大きさに変換されたパズルピースのようなものである。この積層画像（integral image）の構造はマイクロ画像の深度に依存する。われわれのアルゴリズムは、マイクロ画像のサイズを変更し、反転させ、適宜纖細合わせることができ、さらにこれらを組み合わせることで最終的な像を作り出すことができる。

このカメラの設計では、正しくピントの合った像を得るために、マイクロレンズはセンサーから正確な距離だけ離れていなければならな。図5にはPlenoptic 2.0の2つのバージョンが示されている。従来のplenopticカメラに比べて高解像であるだけでなく、サブピングが柔軟になっている。マイクロレンズとセンサー間の距離によって、1つのマイクロレンズがサンプリングする光学位相空間の空間分解能と角度分解能を調整することができる**（図6）。

光学像相空間において、1つのマイクロレンズでサンプリングできる領域の幅と傾きとの組み合わせ（図6右図の平行四辺形の形状）を調整することにより、空間分解能と角度分解能の配分を正確に選択することができる。実際、従来のplenopticカメラの構造では、エッジ効果によるノイズのために実現できなかったが、plenoptic 2.0では大幅に角度分解能が可能となった***。そのため、図5においてaを大きくすれば、角度分解能が向上し、空間分解能が低下する。

* Plenoptic 1.0は従来のものを指す。Plenoptic 1.0とPlenoptic 2.0の2つの基本的な相違を示す。
 A）Plenoptic 1.0では主カメラレンズの像面にマイクロレンズアレイが配置される。Plenoptic 2.0では主カメラレンズの像面とマイクロレンズは離れている。
 B）Plenoptic 1.0ではマイクロレンズはセンサーからマイクロレンズの焦点距離fだけ離れており、したがって無限遠方で焦点が合っている。Plenoptic 2.0ではマイクロレンズはセンサーから距離b離れており、距離aにある主カメラレンズの像をセンサー上に結像している。
****図5においてaを大きくすれば、角度分解能が向上し、空間分解能が低下する。
***従来のPlenopticカメラ（図2の右図の方法）で高分解能にすると、マイクロレンズの数が非常に多くなり、ひとつのマイクロレンズは数値の像素による像を作ることがになる。この像の周辺の画素（edge pixel）は完全には像の中におさまらないのでノイズが多い。空間分解能を上げると周辺の画素が多くなるので像全体のノイズが大きくなる。ただし、図3の右図の方法では、エッジ効果は大きくならない。

Vol. 30, No. 10 - O plus E 1075
れゆえ、空間分解能をより高められるようになり、また
角度分解能と空間分解能のトレードがいっそう柔軟にな
った。
計算機写真では、ハードとソフトが共に進化しなけれ
ばならない。それゆえ、Plenoptic 2.0 では、最終像を
得るための新しいアルゴリズムも開発した。われわれが
解像力の改良をする以前は、plenoptic カメラは角度情
報を得ることはできなかったが、低い空間分解能であった
（300×300 画素）。最適化した Plenoptic 2.0 では、角
度分解能を犠牲にすることで、空間分解能としての画素数
を 10 〜 20 倍に向上させることができた（図 7）。高
解像力を得たまま、異なる視点からの像を得ることができ
できた。ピント位置を変えることができた。またその他の画
像処理が行える。初期の plenoptic カメラでは 0.1 メガ
ピクセル程度の小さな画素しか撮ることができなかっ
た。新しいカメラでは 39 メガピクセルのセンサーを用
いて、2 メガピクセルの最終像を得ることができ、そし
てさらなる向上も可能である。このことは集積カメラ
(plenoptic カメラ) の実用化へのブレーススルーを示し
ていると確信している。

5. このイノベーションが何を可能にするのだろうか？
この 100 年間、リップマンが洞察したものは多くの
可能性を満たしたものと考えられてきた。しかし、試作や
研究の結果は、われわれの顧客を満足させるものではな
かった。しかしながら、コンピューターの能力やカメラ
のハードウェアの最近の進歩により、このアイデアはつ
いに実用化されつつある。
そこで、デジタル写真の分野において、これらの革
新は何を本当に意味しているのであろうか？Adobe®
Photoshop® のような画像編集ソフトは、計算機写真に
おいて得られたデータのまったく新たな処理を可能にし
てくれる。例えば、Adobe Labs では、Photoshop® に
おいて多数の画像の焦点情報を元に画像の深度を深くす
る技術を研究している。この研究を新しい plenoptic カ
メラに直接応用できる。しかし集積写真において、われ
われは、1 回の撮影でよりも多くの放物面の情報を得るこ
とをさらに目指している。実際の像のピントを撮影後に
仮想的に変えただけでなく、他の画像処理が可能となる。
例えば、
・口径と焦点深度は、画像取得後に調整できる。
・ピクセルごとにピントを変えることができる。カメ
ラやレンズだけでは不可可能性があるが、“焦点筆
(Focus Brush)”によって、画像の任意の部分のピ
ントを合わせたり外したりできる。
・画像を撮った後でも、カメラの位置を実質的に移動
させることができ、カメラの視点を調整できる。
・写真の中の物体を、現在使われている色認識による
不完全な方法ではなく、焦点情報に基づき自動的に
選択することができる。
・写真の中の適切な奥行き位置に、物体を追加するこ
とができる。
・Adobe® After Effects® のようなソフトによって、こ
れらのすべての処理がビデオでも同様に可能となる。
このような特性があるので、写真家は画像の調整をデ
ジタル暗室に任せることになる。カメラによって風景、
特集：ちょっと気になるカメラの仕組み

物体、あるいは瞬間をとらえるという芸術性の追求の裏側で、多くの時間を費やしていたが、彼らをそこから解放することになる。また、まったく新しい画像編集が可能となり、今までは想像できなかった画像の3次元的な性質の制御によって、撮影現場でできる以上のが可能となる。写真家は物理的にありえない像を創ることができるのである。

Adobeはこの革新的な研究を将来の写真として推し進めてはいるが、それはいつも偉大な人々の貢献の上に成り立っている。ガリレオとケプラーという偉大な先人の仕事だけでなく、LevoyやNgのような最近の仕事も参考にしている5)。1908年のリップマンの力強く、想像性豊かな仕事からこの解説を書き始めたが、彼のアイデアは実用化が始まるまでに100年かかった。次の100年が何をもたらすのであろうか、想像を巡らすばかりである。

参考文献

※Adobe, Adobe Photoshop, およびAdobe After EffectsはAdobe Systems Incorporated（米国アドビシステムズ社）の米国ならびにその他の国における商標または登録商標です。